Реферат: Статистическое определение вероятности. Вероятность события Свойства статистической вероятности

Билеты по теории вероятностей.

Теория вероятностей - раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними

Теория вероятностей изучает случайные явления под случайными явлениями понимают такие, которые имеют место в совокупностях большего числа равноправных или почти равноправных объектов и определяются массовым характером явления.

Теория вероятности – отражает закономерности присущие случайным событиям массового характера и в основном этой теории лежат основные понятия.

События и их классификация.

Возможность определения события характеризуется вероятностью события.

Где - кол-во интересующих событий, - кол-во наблюдаемых событий.

Достоверное событие , если вероятность появления его равна 1.

Недостоверное событие называется, если вероятность равна 0.

Несовместные события – события, при которых в данном опыте не могут появиться 2 из них.

Равновозможные события – события, при которых в данном опыте не одно из них не является объективно возможным.

Противоположные события – события, которые образуют полную группу из 2-х событий.

Независимые события – такие, при которых не зависимы каждое из 2-х событий.(Корреляция-не зависимость)

Совместные события – такие события, при которых появление 1 из них не исключает появление вругово в одном и том же опыте.

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие - четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение . Вероятность события равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где - вероятность события , - число благоприятствующих событию исходов, - общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.

Пример. Известно, что в поступившей партии из 30 швейных машинок 10 имеют внутренний дефект. Определить вероятность того, что из партии в 5 наудачу взятых машинок 3 окажутся бездефектными.

Решение. Для решения данной задачи введем обозначения. Пусть - общее число машинок, - число бездефектных машинок, - число отобранных в партию машинок, - число бездефектных машинок в отобранной партии.

Общее число комбинаций по машинок, т.е. общее число возможных исходов будет равно числу сочетаний из элементов по , т.е. . Но в каждой отобранной комбинации должно содержаться по три бездефектные машинки. Число таких комбинаций равно числу сочетаний из элементов по , т.е. .

С каждой такой комбинацией в отобранной партии оставшиеся дефектные элементы тоже образуют множество комбинаций, число которых равно числу сочетаний из элементов по , т.е. .

Это значит, что общее число благоприятствующих исходов определяется произведением . Откуда получаем

Классическое определение вероятности.

Пусть в результате испытания появляются элементарные исходы (события): ω 1 , ω 2 , ω 3 , …, ω m , ω m +1 , …, ω n , которые образуют полную группу попарно несовместных равновозможных событий.

Определение: Элементарные исходы, в которых интересующее нас событие наступает, назовём благоприятствующими этому событию.

Пусть интересующее нас событие A наблюдается, если наступает один из элементарных исходов: ω 1 , ω 2 , …, ω m .

Определение: Вероятностью события A называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу:

где m – число элементарных исходов, благоприятствующих событию A;

n – число всех возможных элементарных исходов испытания.

Пример: В урне имеется шесть одинаковых шаров: два из них – красные, три – синие и один – белый. Наудачу извлекаем шар.

Найти вероятность того, что он не белый.

Решение: Возможно шесть элементарных исходов:

ω 1 – появился белый шар,

ω 2 , ω 3 – появился красный шар,

ω 4 , ω 5 , ω 6 – появился синий шар.

Вычисляем вероятность извлечения не белого шара:

Т.к. m = 5, n = 6.

Из определения вероятности вытекают следующие её свойства:

Свойство 1: Вероятность достоверного события равна единице.

Доказательство: Событие достоверно, следовательно, каждый элементарный исход испытания благоприятствует событию:

Свойство 2: Вероятность невозможного события равна нулю.

Доказательство: Событие невозможно, следовательно, ни один элементарный исход не является благоприятствующим событию:

Свойство 3: Вероятность случайного события есть положительное число, заключённое между нулём и единицей.

Доказательство: Случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. Следовательно, 0 < m < n , тогда:

Вывод: Вероятность любого события удовлетворяет неравенству:

Заметим, что классическое определение вероятности имеет свои недостатки. Например, оно предполагает, что число элементарных исходов конечно. На практике часто встречаются испытания, число возможных исходов которых бесконечно. Отсюда вытекает ограниченность классического определения. Другой недостаток классического определения вероятности: часто бывает невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные события равновозможными. Требуется введение других определений вероятности.

Прежде чем дать определение статистической вероятности, дадим определение относительной частоты.



Определение: Относительной частотой события называется отношение числа испытаний m, в которых событие появилось, к общему числу фактически проведенных испытаний n:

Заметим, что вероятность вычисляют до опыта, а относительную частоту – после опыта.

Пример: ОТК (отдел технического контроля) обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей.

В этом случае относительная частота появления нестандартных деталей равна:

Свойство устойчивости относительной частоты: В различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа.

Оказалось, что это постоянное число – вероятность появления события:

W(A) ≈ P(A).

Пример: По данным шведской статистики, относительная частота рождения девочек за 1935 год по месяцам (начиная с января) характеризуется следующими числами:

0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,473.

Тогда W(A) ≈ 0,481 ≈ P(A) – приближённое значение вероятности рождения девочки.

Определение: Вероятностью события A называется число, относительно которого стабилизируется (устанавливается) относительная частота W(A) при неограниченном увеличении числа опытов.

Очевидно, что все свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Рис. 1.1 Рис 1.2

Пример 1.2. Два студента условились встретиться в определенном месте между 10 и 11 часами дня. Пришедший первым ждет второго в течение 15 минут, после чего уходит. Найти вероятность того, что встреча состоится, если каждый студент наудачу выбирает момент своего прихода между 10 и 11 часами.

Решение. Обозначим моменты прихода в определенное место первого и второго студентов соответственно через x и y . В прямоугольной системе координат Oxy возьмем за начало отсчета 10 часов, а за единицу измерения – 1 час. По условию 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Этим неравенствам удовлетворяют координаты любой точки, принадлежащей квадрату OKLM со стороной, равной 1 (рис. 1.2). Событие А – встреча двух студентов – произойдет, если разность между x и не y превзойдет 1/4 часа (по абсолютной величине), т.е. |y x | ≤ 0,25.

Решение этого неравенства есть полоса x – 0,25 ≤ y x + 0,25, которая внутри квадрата G представляет заштрихованную область g . По формуле (1.3)

В экономике, так же как и в других областях человеческой деятельности или в природе, постоянно приходится иметь дело с событиями, которые невозможно точно предсказать. Так, объем продаж товара зависит от спроса, который может существенно изменяться, и от ряда других факторов, которые учесть практически нереально. Поэтому при организации производства и осуществлении продаж приходится прогнозировать исход такой деятельности на основе либо собственного предыдущего опыта, либо аналогичного опыта других людей, либо интуиции, которая в значительной степени тоже опирается на опытные данные.

Чтобы каким-то образом оценить рассматриваемое событие, необходимо учитывать или специально организовывать условия, в которых фиксируется это событие.

Осуществление определенных условий или действий для выявления рассматриваемого события носит название опыта или эксперимента .

Событие называется случайным , если в результате опыта оно может произойти или не произойти.

Событие называется достоверным , если оно обязательно появляется в результате данного опыта, и невозможным , если оно не может появиться в этом опыте.

Например, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием. Выпадение снега на экваторе можно рассматривать как невозможное событие.

Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

Алгебра событий

События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

Суммой событий называется событие, состоящее в появлении хотя бы одного из этих событий

В качестве примера суммы событий можно назвать наличие в магазине хотя бы одного из двух товаров.

Произведением событий называется событие, состоящее в одновременном появлении всех этих событий

Событие, состоящее в появлении одновременно в магазине двух товаров является произведением событий: -появление одного товара, — появление другого товара.

События образуют полную группу событий, если хотя бы одно из них обязательно произойдет в опыте.

Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

Противоположными называются два единственно возможных события, образующих полную группу.

Если одно из событий, являющихся противоположными, обозначить через , то противоположное событие обычно обозначают через .

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где — вероятность события , — число благоприятствующих событию исходов, — общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.

Основные понятия. Теоремы сложения и умножения.

Формулы полной вероятности, Бейеса, Бернулли. Теоремы Лапласа.

Вопросы

  1. Предмет теории вероятности.
  2. Виды событий.
  3. Классическое определение вероятности.
  4. Статистическое определение вероятности.
  5. Геометрическое определение вероятности.
  6. Теорема сложения вероятностей несовместных событий.
  7. Теорема умножения вероятностей независимых событий.
  8. Условная вероятность.
  9. Умножение зависимых событий.
  10. Сложение совместных событий.
  11. Формула полной вероятности.
  12. Формула Бейеса.

13. Биноминальный, полиномиальный закон распределения .

  1. Предмет теории вероятностей. Основные понятия.

Событием в теории вероятностей называют всякий факт, который может произойти в результате некоторого опыта (испытания).

Например: Стрелок стреляет по мишени. Выстрел – испытание, попадание в мишень – событие. События принято обозначать

Единичное случайное событие – следствие очень многих случайных причин, которые очень часто невозможно учесть. Однако, если рассматривать массовые однородные события (многократно наблюдающиеся при осуществлении опыта в одних и тех же условиях), то они оказываются подчиняются определенным закономерностям: если бросать монету в одних и тех же условиях большое число раз, можно с небольшой погрешностью предсказать, что число появлений герба будет равно половине числа бросков.

Предметом теории вероятностей является изучение вероятностных закономерностей массовых однородных случайных событий. Методы теории вероятностей широко применяются в теориях надежности, стрельбы, автоматического управления и т.д. Теория вероятности служит обоснованием математической и прикладной статистики, которая в свою очередь используется при планировании и организации производства, при анализе технологических процессов и т.д.



Определения.

1. Если в результате опыта событие

а) всегда произойдет, то - достоверное событие,

б) никогда не наступит, то - невозможные событие,

в) может произойти, то может и не произойти, то - случайное (возможное) событие.

2. События называются равновозможным, если есть основания считать, что ни одно из этих событий не имеет больше шансов появиться в результате опыта, чем другие.

3. События и - совместные (несовместные), если появление одного из них не исключает (исключает) появление другого.

4. Группа событий совместна, если совместны хотя бы два события из это й группы, иначе – несовместна.

5. Группа событий называется полной, если в результате опыта обязательно наступит одно из них.

Пример 1. По мишени производят три выстрела: Пусть - попадание (промах) при первом выстреле - при втором выстреле, - при третьем выстреле. Тогда

а) - совместная группа равновозможных событий.

б) - полная группа несовместных событий. - событие, противоположное .

в) - полная группа событий.

Классическая и статистическая вероятность

Классический способ определения вероятности применяется для полной группы равновозможных несовместных событий.

Каждое событие этой группы назовем случаем или элементарным исходом. По отношению к каждому событию случаи делятся на благоприятные и неблагоприятные.

Определение 2. Вероятностью события называют величину

где - число случаев, благоприятных появлению события , - общее число равно-возможных в данном опыте случаев.

Пример 2. Брошены две игральные кости. Пусть событие - сумма выпавших очков равна . Найти .

а) Ошибочное решение. Всего возможно 2 случая: и - полная группа несовместных событий. Благоприятен одни случай, т.е.

Это ошибка, так как и не равновозможные.

б) Всего равновозможных случаев . Благоприятные случаи: выпадение

Слабыми сторонами классического определения являются:

1. - количество случаев конечно.

2. Результат опыта очень часто невозможно представить в виде совокупности элементарных событий (случаев).

3. Трудно указать основания, позволяющие считать случаи равновозможными.

Пусть произведено серия из испытаний.

Определение 3. Относительной частотой события называют величину

где - число испытаний, в которых появилось события , - общее число испытаний.

Длительные наблюдения показали, что в различных опытах при достаточно больших

Изменяется мало, колеблясь около некоторого постоянного числа, которое назовем статистической вероятностью.

Вероятность обладает следующими свойствами:

Алгебра событий

7.3.1Определения.

8. Суммой или объединением нескольких событий называется событие, состоящее хотя бы одного из них.

9. Произведением нескольких событий, называется событие, состоящее в совместном появлении всех этих событий.

Из примера 1. - хотя бы одно попадание при трех выстрелах, - попадание при первым и вторым выстрелах и промах при третьем.

Ровно одно попадание.

Не менее двух попаданий.

10. Два события называется независимыми (зависимыми), если вероятность одного из них не зависит (зависит) от появления или не появления другого.

11. Несколько событий называются независимыми в совокупности, если каждое из них и любая линейная комбинация из остальных событий, есть события независимые.

12. Условной вероятностью называют вероятность события , вычисленного в предположении, что событие произошло.

7.3.2 Теорема умножения вероятностей.

Вероятность совместного появления (произведе-ния) нескольких событий равна произведению вероятности одного из них на условные вероятности остальных событий, вычисленных в предположении, что все предыдущие события имели место

Следствие 1. Если - независимы в совокупности, то

Действительно: так как .

Пример 3. В урне 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что из урны наудачу извлекают один шар. Какова вероятность того, что при первом испытании появится белый шар , при втором – черный шар , при третьем – синий шар , если

а) каждый раз шар возвращается в урну.

- в урне после первого испытания шаров из них 4 белых. . Отсюда

б) шар не возвращается в урну. Тогда - независимые в совокупности и

7.3.3 Теорема сложения вероятностей.

Вероятность появления хотя бы одного из событий равна

Следствие 2. Если события попарно несовместные, то

Действительно в этом случае

Пример 4. Производится три выстрела по одной мишени. Вероятность попадания при первом выстреле - , при втором - , при третьем - . Найти вероятность хотя бы одного попадания.

Решение. Пусть - попадание при первом выстреле, - при втором, - при третьем, - хотя бы одно попадании при трех встрелах. Тогда , где - совместные независимые в совокупности. Тогда

Следствие 3. Если попарно несовместные события образуют полную группу, то

Следствие 4. Для противоположных событий

Иногда при решении задач легче найти вероятность противоположного события. Например в примере 4 - промах при трех выстрелах. Так как независимые в совокупности, и то